Acceleration

• Issues

- Energy spread to storage ring
- ◆ Beam loading
- ◆ Energy spread in arcs
- ◆ Transverse acceptance
- ◆ Transverse beam blowup

• Plans

- ◆ 200 MHz racetrack RLA base design (JLab)
- ◆ Analyze advantages, realism, of other ideas
 - **★** Dogbone
 - **★** 400 MHz
 - **★** FFAG:
 - > Isochronous
 - > Non-isochronous

Generic Acceleration

- Parameter optimization
 - ◆ Plots versus turn number
 - ★ Arc cost linear in energy acceptance
 - * Arc costs increase with turns
 - ★ Linac costs decrease with turns
 - ★ Linac costs decrease with frequency

f	n	ΔE	η/B	Δx	Cost
MHz		MeV	T^{-1}	cm	
200	8	180	0.0474	2.9	185
200	6	273	0.0068	0.6	217
400	5	338	0.0137	1.5	203

Results

- **★** Higher frequency better for fewer turns
- **★** Energy spread strongly affects cost
- * Reducing M_{56} increases energy spread, cost
- * Momentum compaction too high for 200 MHz max η .
- * Cost, energy spread increase with frequency for $\max \eta$.
- ★ More turns for optimum at lower frequency, energy spread
- * Probable optimum: max η at lowest frequency
- **★** Optimum not sharp
- ◆ Task: understand arc cost dependence

Beam Loading

- Max at 400 MHz
 - ◆ Gradient sag: 9% (18% energy)
 - ◆ Energy oscillation amplitude: 18 MeV
 - **★** Smooth approximation
 - ★ Probably worse in real life, factor of 2?
- Beam loading non-issue
- Simulate for convincing results

Baseline Scheme Issues

- Maximize M_{56} for minimum energy spread
 - ◆ Try further off-crest?
- Transverse acceptance/blowup
 - Full nonlinear simulation in standard code (COSY?)
- Get dependence of arc cost on energy spread
 - ◆ Performance also
- Fast longitudinal rotation
- Full optimization

Alternative Scheme Plans

Dogbone

◆ Produce system design, compare to racetrack (Me, Carol)

• Isochronous FFAG

- ◆ Multi-frequency scheme (loading, length): Palmer
- Analyze, simulate for effects (me)
- ◆ Arc design (Carol)

• Non-isochronous FFAG

- Frequency shifting schemes
 - **★** Ferrite (Zhao, ?): most promising?
 - * Piezo
 - **★** PIN diode

RF Power

- 200 MHz needed in two places
 - Acceleration
 - **★** Small amount of power
 - ★ 2 ms pulse length
 - Cooling
 - **★** Vast majority of power
 - ⋆ Major contributor to cost
 - \star 200 μ s pulse length
 - Screams for pulse compression
 - ★ Large cavity size
- Non-uniform pulse pattern
 - ◆ Average rep rate is 15 Hz
 - ◆ Local rep rate is 60 Hz
 - ◆ Source cost may be determined by local rep rate
 - **★** Heating
 - ★ Electron/ion clearing
- Consider various types
 - Klystrons (most likely)
 - ◆ Tetrodes (reliability)
 - ◆ Magnetrons (???)